mos在控制器电路中的工作状态:开通过程(由截止到导通的过渡过程)、导通状态、关断过程(由导通到截止的过度过程)、截止状态、mos主要损耗也对应这几个状态,开关损耗(开通过程和导通过程),导通损耗,截止损耗以及雪崩能量损耗。只要把这些损耗控制在mos承受规格之内,mos即会正常工作,超出承受范围,即发生损坏。
mos管的损坏主要围绕雪崩损坏、器件发热损坏、内置二极管破坏、由寄生振荡导致的破坏、栅极电涌、静电破坏这五大方面。接下来就由小编针对mos管的损坏原因做以下简明介绍。
1、雪崩损坏
如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。
在介质负载的开关运行断开时产生的回扫电压或者由漏磁电感产生的尖峰电压超出功率mos的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩损坏。
2、器件发热损坏
该种损坏是由超出安全区域引起发热而导致的。发热的原因分为直流功率和瞬态功率两种。
(1) 直流功率是由外加直流功率而导致的损耗引起的发热,损耗有导通电阻RDS(on)损耗(高温时RDS(on)增大,导致一定电流下,功耗增加)、由漏电流IDSS引起的损耗(和其他损耗相比极小)。
(2)瞬态功率是由外加单触发脉冲而导致的损耗引起的发热,损耗负载短路、开关损耗(接通、断开,与温度和工作频率是相关的)、内置二极管的trr损耗(上下桥臂短路损耗,与温度和工作频率是相关的)。
器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。
3、内置二极管破坏
在DS端间构成的寄生二极管运行时,由于在Flyback时功率mos的寄生双极晶体管运行,导致此二极管破坏的模式。
4、由寄生振荡导致的破坏
此种破坏方式在并联时极易发生。在并联功率mos时未插入栅极电阻而直接连接时发生的栅极寄生振荡。高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容Cgd(Crss)和栅极引脚电感Lg形成的谐振电路上发生此寄生振荡。当谐振条件(ωL=1/ωC)成立时,在栅极-源极间外加远远大于驱动电压Vgs(in)的振动电压,由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容Cgd和Vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。
5、栅极电涌、静电破坏
主要有因在栅极和源极之间如果存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏。
以上有关mos损坏的原因就讲到这里啦,咱们下期再见啦~
备注:本文素材来源于网络,仅作学习与交流,所有观点属于原作者,不代表对该观点表示支持或赞同,如有侵犯到您的权利,请及时联系我们删除。